GPT-4 Teknik Rapor Çevirisi 2

GPT-4 Teknik Rapor Çevirisi 2

Ayrıca geliştiricilerin kullanıcılara model çıktılarını eleştirel bir şekilde değerlendirmenin önemini anlatmalarını öneriyoruz. Özellikle, model tarafından üretilen bilgilerin resmi bilimsel eğitime erişimi olmayan bireyler ve devlet dışı aktörler için faydalı olma ihtimalinin yüksek olduğunu tespit ettik. Model, başarılı olmuş tarihsel yayılma girişimleri de dahil olmak üzere yaygın yayılma yolları hakkında genel bilgi sağlayabilir. Model, savunmasız kamu hedefleri önerebilir, çift kullanımlı malzemeleri korumak için tipik olarak kullanılan genel güvenlik önlemlerini sağlayabilir ve radyolojik bir dağıtma cihazı tasarlamak için gereken temel bileşenleri oluşturabilir. Model, hem bireysel hem de nüfus düzeyinde zarara neden olabilecek bileşikler de dahil olmak üzere, çevrimiçi olarak kamuya açık olan bazı biyokimyasal bileşikleri kolayca yeniden tasarladı. Kırmızı ekip üyeleri modeli yeni biyokimyasal maddeler üretmeye başarılı bir şekilde zorlayamamıştır. GPT-4, birden fazla dilde otokratik hükümetler lehine ayrımcı içerik üretme yeteneğine sahiptir. Dil seçiminin model çıktılarındaki farklılıkları ne ölçüde ve aslında etkileyip etkilemediğini doğrulamak için ek testler gereklidir. LLM’ ler olarak da bilinen büyük dil modelleri, web taraması, sesli asistanlar ve kodlama yardım araçları dahil olmak üzere çok çeşitli alanlara yayılan kullanımlarıyla günlük hayatımızın giderek yaygınlaşan bir parçası haline gelmiştir.[1, 2, 3, 4] Bu modeller toplumu çeşitli şekillerde önemli ölçüde etkileme potansiyeline sahiptir.

Bu bölümde listelenen alt kategorilerin geri kalanında değerlendirilen alanların bazıları için daha fazla bağlam, örnek ve bulguları not ediyoruz. Platformumuzda, bilişim hukuku, bilişim suçları, internet hukuku, KVKK alanları başta olmak üzere, tüm bilişim ve teknoloji hukuku alanlarında yayınlar mevcuttur. [19] Sezgisel olarak, kendi varlıklarını yeterince uzun süre koruyamayan veya hedefe ulaşmak için gereken minimum kaynak miktarını elde edemeyen sistemler hedefe ulaşmada başarısız olacaktır. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh, Z. Kenton, S. Brown, W. Hawkins, T. Stepleton, C. Biles, A. Birhane, J. Haas, L. Rimell, L. A. Hendricks, W. Isaac, S. Legassick, G. Irving ve I. Taslaklar üzerindeki değerli katkıları için Brian Christian, Heidy Khlaaf, Katya Klinova, Haydn Belfield, Owain Evans, Andrew Reddie, Paul Scharre, Jason Matheny, Jacob Hilton, Vishal Maini, Sam Manning, Julian Hazell ve Erol Can Akbaba’ ya teşekkür ederiz. İçerik, herhangi bir cinsel içerik veya cinsel aktiviteye ilişkin herhangi bir imge, referans veya tanımlama içermez. Örneğin, bir yetişkinin çekici olduğunun belirtilmesi, seks içermeyen romantik ilişki ve flört tasvirleri. Bu süreç, RM veri kümemize de karıştırdığımız (halüsinasyonlu orijinal yanıt, GPT-4’ e göre halüsinasyonsuz yeni yanıt) arasında karşılaştırmalar üretir. Yanıtınız yalnızca tek bir karakterle başlamalıdır “A” veya “B” veya “C” veya “D” veya “E” veya “F” veya “G” veya “H” veya “I” veya “J” veya “K” veya “L” veya “M” veya “N” veya “O” veya “P” veya “Q” veya “R” (tırnak işaretleri veya noktalama işaretleri olmadan) kendi satırında ve ardından bir sonraki satırda cevabınızın açıklaması. Açıklamanız okuyucuyu muhakemeniz boyunca adım adım ilerletmeli ve doğru cevapla sonuçlanmalıdır.

Ancak, yapay zekayı bir üretkenlik çarpanı olarak kullanmak bile çalışanların yeni iş akışlarına uyum sağlamasını ve becerilerini artırmasını gerektirmektedir. [3] Temel GPT-4 modeliyle bir karşılaştırma yapmak yerine kasıtlı olarak bu iki versiyona odaklanıyoruz, çünkü temel model alan uzmanı kırmızı ekip üyelerinin ilgilenilen davranışları ortaya çıkarmak için etkili bir şekilde kullanmasının zor olduğunu kanıtladı. Ön eğitim aşamasında, uygunsuz erotik metin içeriğinin miktarını özellikle azaltmak için GPT-4 için veri kümesi karışımımızı filtreledik. Bunu, uygunsuz erotik içerik içerme olasılığı yüksek olarak işaretlenen belgeleri belirlemek için dahili olarak eğitilmiş sınıflandırıcıların[37] ve sözlük tabanlı bir yaklaşımın bir kombinasyonu yoluyla yaptık. GPT-4’ ün etkilerini izlemeye devam etmek için, modellere erişim sağlandığında daha karmaşık görevlerde çalışan performansının nasıl değiştiğine dair deneyler, kullanıcılarımıza ve teknolojimizi geliştiren firmalara yönelik anketler ve araştırmacı erişim programımız gibi çabalara yatırım yapıyoruz. Dil modelleri önyargıları güçlendirebilir ve stereotipleri devam ettirebilir[40, 41, 42, 43, 44, 45, 46, 6] Daha önceki GPT modelleri ve diğer yaygın dil modelleri gibi, hem GPT-4-erken hem de GPT-4-lansmanı sosyal önyargıları ve dünya görüşlerini güçlendirmeye devam etmektedir. [27] Tüm çalışanlarla birlikte, her açıklamacının hoş bulmadığı herhangi bir görevi bırakma hakkını elinde tutmasını, sundukları işle orantılı bir piyasa ücreti almasını ve işlerini tartışabilecekleri ve itirazlarını dile getirebilecekleri fırsatlara ve kanallara sahip olmalarını sağlayarak sektördeki en iyi uygulamaları[95, 96] takip ediyoruz. Açıklayıcılarımızın hassas veya istenmeyen içerikle çalışıp çalışmamasına göre uyarlanmış iki farklı kılavuz ilke seti uyguluyoruz.

Modelin uç durumları ayırt etme kabiliyetini geliştirmek için, modellerimizin izin verilmeyen içerik talep eden istemleri, eski istemlere maksimum düzeyde benzeyen yeni sınır istemlerine yeniden yazmasını sağlıyoruz. Aradaki fark, izin verilmeyen içerik talep etmemeleri ve modelimizin bu istemleri reddetmediğinden emin olmak için RBRM’ leri kullanmalarıdır. Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Bilgisayar Eğitimi Ana bilim dalından 2006 yılında mezun olmuştur. Birinci Yüksek Lisansını Gazi Üniversitesi Bilişim Enstitüsünde Adli Bilişim Ana bilim dalında 2019 yılında, İkinci Yüksek Lisansını Ondokuz Mayıs ÜniverPinUpbet güncel adres!5@PinUpbethttps://PinUpcasino-tr.com/;PinUpbet Lisansüstü Eğitim Enstitüsü Veri Bilimi Ana bilim dalında 2021 yılında, Doktorasını Adli Bilişim Mühendisliği Ana bilim dalında Uluslararası Dublin Üniversitesinde 2022 yılında tamamlamıştır. Yüksek lisans ve Doktora mezuniyet çalışmalarını Bilgi güvenliği yönetim sistemleri, Makine Öğrenmesi ve İletişim kayıtlarının adli delil niteliğinin incelenmesi konularında yapmıştır. Aynı zamanda 2017 yılından bu yana mezuniyet alanları çerçevesinde resmi ve özel bilirkişilik yapmaktadır. Modelin sağlamlığını artırmak için, istenen GPT-4 başlatma davranışını atlatmaya çalışan etiketleyicilerden sıralama verileri topluyoruz.

Hafifletici önlemlerimiz uygulamaya konulmadan önce, GPT-4-early’ nin yasadışı mal veya hizmet satan web sitelerini bulma ve saldırı planlama gibi alanlarda artan riskler sunduğunu da tespit ettik. Buna ek olarak, modelin artan tutarlılığı, daha inandırıcı ve daha ikna edici olabilecek içerikler üretmesini sağlamaktadır. Ayrıca, yeni risk vektörleri üzerinde bir dizi sınıflandırıcı eğittik ve bunları izleme iş akışımıza dahil ederek API kullanım politikalarımızı daha iyi uygulamamızı sağladık. Bu hafifletmelerin etkinliği değişkenlik gösterse de genel olarak çeşitli türlerde potansiyel olarak zararlı içerik üretme kolaylığını önemli ölçüde azaltmayı başardık ve böylece GPT-4-launch’ ı bu boyutlar açısından GPT-4-early’ den önemli ölçüde daha güvenli hale getirdik. Ön eğitim aşamasından sonra, GPT-4 fırlatma davranışını şekillendirmek için birincil yöntemimiz RLHF idi. GPT-4 gibi modeller izole bir şekilde değil, birden fazla araç, organizasyon, birey, kurum ve teşvik içeren karmaşık sistemlerin bir parçası olarak geliştirilir ve uygulanır. Bu, güçlü YZ sistemlerinin potansiyel olarak zararlı sistem-sistem veya insan-sistem geri bildirim döngülerinin ortaya çıkması bağlamında değerlendirilmesi ve tersine test edilmesi ve bu tür geri bildirim döngülerinin karmaşık, ortaya çıkan doğasına saygı duyan bir güvenlik marjı ile geliştirilmesi gerektiğinin bir nedenidir. Nesiller genellikle kullanılamayacak kadar belirsizdi, pratik olmayan çözümler üretiyordu ya da bir tehdit aktörünü sabote edebilecek veya başka bir şekilde geciktirebilecek olgusal hatalar yapmaya eğilimliydi.[18] Ayrıca, daha uzun yanıtların yanlışlıklar içermesi daha olasıydı. Örneğin, kırmızı ekip üyesi radyolojik bir cihazın veya biyokimyasal bileşiğin mühendisliği için çok adımlı talimatlar istediğinde modelin belirsiz veya yanlış bir yanıt üretme olasılığı daha yüksekti. Doğru olmayan nesiller genellikle ikna edici görünüyordu ancak sonuçta Halüsinasyonlar bölümünde özetlenen aynı sorunları içeriyordu.

[6] 6 Bu kategorizasyonun optimal, hiyerarşik bir taksonomiyi temsil etmesi amaçlanmamıştır, ancak bunu söylemenin bazı perspektifleri ve çerçeveleri değerlendirmesini engellemediğinin farkındayız.[23] Bu kategoriler birbirini dışlayan kategoriler de değildir. Örneğin, önyargı yanlış bilgilendirme, zararlı içerik ve halüsinasyon gibi şeylere neden olabilir ve bunlar arasında ayrım yapmak sorunu daraltabilir. Ayrıca, önyargı bir tür yanlış bilgilendirme veya yanlış beyan olarak da değerlendirilebilir. Zarar sınıflandırmaları ve bunları kullanırken göz önünde bulundurulması gereken faktörler hakkında daha fazla tartışma için, örneğin, [24] ve [25]’ e bakınız. Yukarıda gördüğümüz gibi, hem gelişmiş dil modeli yetenekleri hem de sınırlamaları, bu modellerin sorumlu ve güvenli bir şekilde toplumsal olarak benimsenmesi için önemli zorluklar oluşturabilir. Hepimizin ilerleme hızına hazırlıklı olmasını sağlamak için, YZ okuryazarlığı, ekonomik ve sosyal dayanıklılık ve öngörülü yönetişim gibi alanlara daha fazla araştırma vurgusu yapmamız gerekiyor.[11] OpenAI, diğer laboratuvarlar ve akademinin model güvenliği konusunda etkili değerlendirme araçları ve teknik iyileştirmeler geliştirmesi çok önemlidir. Son birkaç yılda ilerleme kaydedilmiştir ve güvenliğe daha fazla yatırım yapılması muhtemelen daha fazla kazanım sağlayacaktır. Çalışanların, politika yapıcıların ve araştırmacıların sadece mevcut yetenek durumuna aşırı odaklanmamalarının önemli olduğunu düşünüyoruz. GPT-4’ ün üretken modellerin üzerine inşa edilen yeni uygulamaların geliştirilmesini hızlandırmasını ve bu uygulamaların genellikle tek başına modelden daha karmaşık görevleri çözmesini bekliyoruz. Aslında, İvme bölümünde tartışıldığı gibi, teknolojik gelişimin genel hızının YZ, özellikle de daha iyi YZ sistemlerinin geliştirilmesi nedeniyle hızlanması olasıdır.

  • Bu alanları, dil modelleri ve yapay zeka sistemlerinde daha önce gözlemlenen riskler ve dil modellerinin uygulanmasına yönelik kullanıcı ilgisinin arttığını gözlemlediğimiz alanlar da dahil olmak üzere bir dizi faktöre dayanarak seçtik.
  • 2005 yılından günümüze kadar Domain / Alanadı ve Veri Merkezi tarafında da Sunucu Barındırma, Sanal Sunucu ve Hosting hizmetlerinde bizi tercih ettiğiniz için teşekkür ederiz.

Bazı önyargı türleri, reddetme eğitimi yoluyla, yani modelin belirli sorulara yanıt vermeyi reddetmesi sağlanarak azaltılabilir. Bu, bir grup insanı açıkça aşağılayan içerik üretmeye çalışan yönlendirici bir soru olduğunda etkili olabilir. Bununla birlikte, reddetmelerin ve diğer hafifletmelerin bazı bağlamlarda önyargıyı daha da kötüleştirebileceğini[35] veya yanlış bir güvence duygusuna katkıda bulunabileceğini belirtmek önemlidir.[43] Ayrıca, farklı demografik özellikler veya alanlar arasında eşit olmayan reddetme davranışının kendisi de bir önyargı kaynağı olabilir. Örneğin, bir demografik grup için ayrımcı içerik üretmeyi reddederken başka bir demografik grup için buna uymak, özellikle farklı performans sorunlarını daha da kötüleştirebilir. Yürüttüğümüz değerlendirme süreci, GPT-4 modelinin çeşitli versiyonlarındaki önyargılara ilişkin ek nitel kanıtlar elde edilmesine yardımcı oldu. Modelin, belirli marjinal gruplar için zararlı basmakalıp ve küçük düşürücü çağrışımlar da dahil olmak üzere belirli önyargıları ve dünya görüşlerini pekiştirme ve yeniden üretme potansiyeline sahip olduğunu tespit ettik. Örneğin, modelin bazı versiyonları, kadınların oy kullanmasına izin verilip verilmemesi gerektiği ile ilgili sorulara yanıt olarak riskten korunma eğilimi göstermiştir. Ölçüm çalışmalarına ek olarak, geliştirme ve dağıtım sürecinin çeşitli adımlarında tespit edilen sorunları azaltmayı amaçladık.

Bu alanları, dil modelleri ve yapay zeka sistemlerinde daha önce gözlemlenen riskler ve dil modellerinin uygulanmasına yönelik kullanıcı ilgisinin arttığını gözlemlediğimiz alanlar da dahil olmak üzere bir dizi faktöre dayanarak seçtik. Bu uzmanlarla çalışmak, değerlendirmek için uzmanlık gerektiren yüksek riskli alanlardaki model davranışını ve yeterince anlaşılmayan yeni riskleri test etmemizi sağladı. GPT-4, saldırı planlamaya yönelik tavsiyeler veya nefret söylemi gibi potansiyel olarak zararlı içerikler üretebilir. Kullanıcıların niyetini[4] veya yaygın olarak paylaşılan değerleri temsil etmeyebilecek çeşitli önyargıları ve dünya görüşlerini temsil edebilir. Tüm bu eksenlerdeki mevcut hafifletmelerimiz, model içinde dokümantasyon ve riskten korunma dilini içermektedir. Ancak, aşırı güvenin azaltılması birden fazla savunma gerektirir ve özellikle geliştiricilerin aşağı yönlü müdahalelerine bağlıdır. Araçlarımızı kullanan geliştiricilerin son kullanıcılara sistemlerinin yetenekleri ve sınırlamaları hakkında ayrıntılı dokümantasyon sağlamalarının yanı sıra sistemden en iyi performansın nasıl alınacağı konusunda rehberlik etmelerini öneriyoruz.

Bu analiz sayesinde, GPT-4’ ün dış verilerle desteklendiğinde özel şahısların kimliklerini tespit etmek için kullanılma potansiyeline sahip olduğunu tespit ettik. Ayrıca GPT-4’ ün siber güvenlik yeteneklerinin önceki nesil LLM’ lerden çok daha üstün olmamasına rağmen, sosyal mühendislik yoluyla veya mevcut güvenlik araçlarını geliştirerek başarılı bir siber saldırının belirli adımlarının maliyetini potansiyel olarak düşürme eğilimini sürdürdüğünü görüyoruz. GPT-4, güvenlik hafifletmeleri olmaksızın, zararlı ya da yasadışı faaliyetlerin nasıl yürütüleceğine dair daha ayrıntılı bir rehberlik de sunabilmektedir. Model düzeyinde güvenlik, üründeki sınıflandırıcıların izlenmesi veya entegrasyonu gibi güvenlikle ilgili diğer altyapılar üzerindeki yükü azaltır. Reddetmeler modelin “zararlı” talepleri reddetmesini sağlar, ancak model yine de “zararlı” olmayan talepler için basmakalıp veya başka türlü ayrımcı olabilecek içerik üretmeye eğilimli olabilir.

Gostou? Compartilhe!

Leia também

pexels-andrea-piacquadio-3760067

Leading Applications for Random Video Call – Guide to Navigate Random Virtual Chat Responsibly

The blackberry torch whilst blackberry 6 os Apple apple iphone 4g and...
pexels-andrea-piacquadio-3760067

How do students use their part-time job to enhance their resume

One about the better ways to accomplish goal is to forfeit articles....
pexels-andrea-piacquadio-3760067

Quick and efficient ways to complete essays

Perform not break down to alter and revise your essay. Everything that...